友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
芙蓉小说 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

黑洞-第10部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


留下一点,就是有个作者。这就是说,嫡量度一个系统的信息的缺乏。
     黑洞动力学
    黑洞决非一种只是永久地隐藏物质而毫无生气的物体。由于它的电荷,更重要的是由于它的角动量,黑洞是一个动力学系统,能够受力和施力,能够吸收和提供能量,也就是说它是随时间变化的。因此,研究支配黑洞演化的定律并与热力学定律作比较,是有重要意义的。
    热力学里一个系统的状态一般可以由两个基本参量来表征:温度和摘。热力学定律表述的正是其他宏观参量,如能量、体积或压强等,在系统的转换中如何作为温度和摘的函数而变化。同样,一个黑洞的动力学状态也由两个参量来表征,一个是黑洞的面积,即对视界面的量度;一个是表面引力,即对视界上引力加速度的量度。
    由于黑洞的平衡态只依赖于质量、角动量和电荷这三个参量,黑洞的面积和表面引力也就可以表示为这三个参量的函数。对于只由质量来表征的史瓦西静止黑洞,计算是很简单的。视界是一个半径正比于黑洞质量的球面(r—ZM),其面积因而就与质量的平方成正比,一个10MW量的球形黑洞面积为5650平方公里,与一个县的大小相当。类似地,表面引力与质量成反比,一个10Mpe形黑洞的表面引力为地球的1500亿倍。
    黑洞动力学也可以概括为四条定律,与通常的热力学定律极为相似。
    第零定律指出,平衡态黑洞视界上的所有点都有同样的表面引力。如果想到两极会由于离心力而变得扁平,这是出乎意料的。对于通常的转动天体如地球,两极上的引力比赤道面上要强。与此不同,无论视界是怎样扁平,黑洞的表面引力总是处处一样。
    第一定律说的是在黑洞的演化过程中(例如,由于对一团尘埃云或一个小行星的捕获),其质量、转动速度和角动量如何作为表面积和表面引力的函数而变化。
    第三定律是指,经过有限次数的转换而把黑洞的表面引力缩减为零是不可能的。极端克尔黑洞是表面引力为零的黑洞的例子,其角动量已达极限值。按照这个定律,极端黑洞是自然界里不可达到的极限。对一个缓慢转动的黑洞,可以由输入来自适当轨道上的物质以增加其角动量,但不可能达到极端状态。
    最后,黑洞动力学第二定律断定,黑洞的表面积决不会随时间减小。一个孤立黑洞可以保持恒定的表面积,但实际黑洞的表面积会随着对物质和辐射的捕获而增大。同样道理,两个黑洞碰撞会并成一个黑洞,这个新黑洞的面积大于原来那两个黑洞面积之和(图52)。
    由史蒂芬·霍金发现的这条基本定律,揭示了黑洞面积与热力学系统的摘之间的密切联系。我们能否把这种相似性再向前推进一步,认为黑洞确实也具有烦呢?
    以色列物理学家雅可市·伯肯斯坦(Jaco Bekens比in)的回答是肯定的。黑洞是一座禁止一切物质和辐射,也就是禁止一切信息逃逸的宇宙监狱;另一方面,当一个物体消失在黑洞中时,对外部观测者来说所有关于它内部性质的知识也都丧失了,留下的只是黑洞新的质量、角动量和电荷值。这就是说,黑洞吞噬一切信息,那么它就必定有一个媳。如同热力学中一样,这个摘的星度对应着同一个给定状态的所有可能内部构型的总数。对这个媳值的计算结果确实与黑洞的表面积成正比。
    IMW量黑洞的摘比太阳的摘大10亿倍。这个差别可以解释为,黑洞在其形成过程中“刮去了毛发”,即吞掉了物质除质量、电荷和角动量以外的所有信息。正因为如此,黑洞是宇宙中最大的摘库。
     黑洞作为能源
    按照黑洞动力学第一定律,虽然黑洞禁止任何物质或辐射逃逸,它却能将能量给予外界媒质。事实上,黑洞的总质能可以分成三个部分:与角动量相联系的转动能量,与电荷相联系的电能量,以及静质量能量。希腊物理学家德梅特里奥斯·克里斯托多罗(Demetrios Christodolou)inHB,前两种形式的能量可LjA黑洞中提取出来,而第三种是不可约的即不可减少的。这个不可约能量直接对应着黑洞面积,而按照第二定律黑洞在演化进程中面积不可减小(嫡最多能在可逆变化中保持恒定)。
    球形和中性的史瓦西黑洞能量最低。它始终是一个引力协,每次吞噬粒子和辐射都增大自己的质量。相反地,一个接近极端状态的黑洞饱含着能量。而且并不吝啬,它的至少占总能量三分之一的转动能是可被提取的。
    原则上可被提取的能量总额大得令人难以置信,相比之下超新星爆发实在是小巫见大巫。但是,黑洞转动能的提取并不像恒星爆发那样具有激变性,要真做到可得大为费神。能层,即静止极限与视界之间的区域,在这里起着决定性作用,罗杰·彭罗斯建议了下面的提取机制。
    远处的实验者朝能层方向抛射出一个物体。抛射体进入能层后分裂成两片,一片被黑洞捕获,另一片飞出能层并被实验者收回(图53)。彭罗斯证明,实验者可以调节抛射体的方向,使得返回的碎片具有比原抛射体更大的能量。具体地说,就是要使被黑洞捕获的碎片是在反转轨道上(即与黑洞转动方向相反)运转,于是它落入黑洞时就会使后者的角动量稍稍减小,净效果就是黑洞失掉一些转动能,而这份能量由逃出的碎片带走。
    这个理想实验为科学幻想小说作家又打开了一片新天地。图54见于查尔斯·米斯勒(Charles MisnerL吉波·索恩(KIPThorne)和约翰·惠勒合著的《引力》一书(旧金山弗里曼公司1973年出版),该书堪称广义相对论的“圣经”。其意图是利用转动黑洞的能层来解决未来世界的能源问题。具体设想是围绕黑洞建造一个巨大的刚性骨架,当然得离黑洞足够远,以避免过大的潮汐力作用。然后在这个骨架上建设一座工业城市,每天有数百万吨垃圾被收集起来,装上小车,倾入黑洞。小车一辆接一辆沿螺旋线落向黑洞,每辆车在进入能层并到达“抛射点”时,一个自动装置打开,把垃圾倒进仔细设计好的反转轨道。黑洞由于捕获垃圾而稍稍减小了转动速度,与此同时,空车以增大的能量离开能层,最后被一个巨大的转手回收,释放出大量的转动能。这个转子是接在发电机上的,于是就可以为城市提供电力。由每辆小车的回收所净得的能量等于抛出垃圾的质量能量再加上黑洞本身质量能量的一部分。所以,由这样一个聪明的方案,城市居民不仅把他们的垃圾的全部质量转变成了电能,而且还提取了黑洞的一部分能量。多么光辉的生态学成就啊!
     黑洞发电机
    彭罗斯机制不只是一种趣谈。黑洞转动能量的提取,有可能已经在自然的天体物理条件下,即通过一个适当分布的外部磁场而实际发生。
    法国天体物理学家梯包·达摩(Thibaut Damour)描绘了黑洞表面与一个运动的带电肥皂泡之间的相似性。尤其是,黑洞是一个有一定电阻的电导体,因此,当一个转动黑洞被置于磁场中时,就会发生发电机效应。转子(黑洞)和定于(外部磁场)之间的感应现象会造成从能层中流过的回路电流,从而减慢黑洞的转动,即提取其能量。这种电流类似于一些重型机械的制动装置里使用的“付科(Foucault)电流”。
    有利于由发电机效应来提取黑洞能量的条件可能存在于一些含有巨型黑洞的星系中心。
     黑洞激光
    另一种提取黑洞转动能的方式是由俄罗斯物理学家雅可夫·泽尔多维奇(YacovZeldovich)于1971年提出的。这种机制被称为超辐射,这是由于它与粒子的受激发射这一熟知的量子力学现象之间的相似性。
    原子里电子所占有的轨道的能量是量子化的,就是说只能是一个基本单位的整数倍。较低的轨道具有较低的能量,“正常”原子里的电子总是趋向于占有较低的轨道,这就是为什么处在高能级的电子会自发地通过发射一个光子而跳跃到低能级。光子是与电磁波相联系的粒子,发射光子的频率与两个能级之差相对应。这就是所谓自发发射。
    反过来,如果一个原子被适当频率的电磁波“照射”,波就会使电子从低能级跃迁到高能级,波也就被原子所部分地吸收,并以较低的能量再传播。现在设想一个有适当准备的原子,其中的大多数电子已占有高能级,这时的原子被称为处于激发态。这种情况下人射电磁波只能导致从高能级到低能级的转移,这就是所谓受激发射,在这个过程中波因获得能量而被加强。这个由爱因斯坦于1916年发现的机制,就是激光作用的原理。激光是以物质和辐射的量子性质为依据所取得的最美妙的技术进展之一。
    一个与此类似的过程可以利用转动的或带电的黑洞(克尔一纽曼黑洞)来实现。这种黑洞可以看作是静止和中性的史瓦西黑洞的“激发态”。第10章已经讲过,一个被照射的黑洞是如何能够吸收并部分地反射外来的光线,而当辐射的不连续性被考虑进来时,新的效应出现,并揭示出引力与量子物理之间的联系。如果有一个适当频率和位相的电磁波或引力波射向一个克尔一纽曼黑洞,反射波就会被加强。也就是说,黑洞把能量给予被散射的波。这个超辐射现象原则上也能使我们提取黑洞的转动能或电官自。
    不妨再对一个克尔一纽曼黑洞与一个激发态原子之间的相似性作进一步探究。黑洞既然允许受激发射,它也就应当允许粒子的自发发射。由于粒子被(经典地)禁止离开视界,粒子的自发产生就必定发生在黑洞之外。
    这种直觉已由对黑洞(用广义相对论描述)与物质或辐射(用量子力学描述)之间相互作用的详细计算所证实。黑洞的“退激发”可以表现为通过发射带电粒子而趋向电中性,也可以表现为通过发射自旋与黑洞角动量同向的粒子而减慢转动。原则上,所有类型的粒子(光子、中子、电子、质子等等)都能被产生出来,不过质量越大的粒子被产生的机会就越小。
    由上所述,黑洞热力学的发展已把我们带到了“经典”世界与“量子”世界的结合处。我们已经看到,黑洞不再是乍看之下的那种无生气的引力饼,而是有着更多的性质。量子黑洞概念于1974年出现,它证实了黑洞的黑颜色,但却除掉了黑洞作为一个洞这一最后的经典性质。第十四章 量子黑洞
    总有好奇成为罪过的时刻,魔鬼就站在科学家身旁。
                   ——阿纳托·弗兰斯(Ara加ie France)
     黑洞会缩小
    史蒂芬·霍金于1971年提出有微型黑洞存在。他认为,在宇宙的初始时刻,远在恒星和星系形成之前,“宇宙浴盆”的压力和能量是如此之大,足以迫使一些物质小团块收缩成为不同尺度和质量的黑洞(见第15章)。特别是,可以由此形成微型黑洞,其质量相当于一座山,而尺度如同一个基本粒子。这些黑洞与现在宇宙中形成的黑洞不同,后者要求大量物质的引力坍缩。
    霍金接着考虑这些小黑洞与周围介质的相互作用。这里所涉及的尺度是微观的,物质和能量就必须由量子力学来描述。前面已经说过,现在还没有一个令人满意的量子引力理论,不过,引力场,包括时空本身,直到普朗克长度才真正表现出不连续性,而这个长度比基本粒子或微型黑洞的半径要小得多。因此,微型黑洞与周围物质和能量的相互作用就可以按一个折衷方案来计算:时空连续体仍保持为“经典的”,并且可以由广义相对论来描述,只是其中容纳的物质和辐射才是量子化的。
    霍金在1974年按这个方案行事,得到的结果完全出乎意料,以至于他以为自己算错了。他又检查了好几遍,终于被迫接受这样的结论:微型黑洞必定会蒸发,即向外发射粒子。
    初看起来这是令人困窘的,这种行为是与黑洞禁止任何物质逃离视界这一“经典”概念公然对抗的。当然,一个“激发态”黑洞可以由缓慢地减少其角动量或电荷而失去一部分能量,但是粒子的发射仍然在视界之外。一个“退激发”的史瓦西黑洞必须保持其与面积和摘相联系的不可约质量能量,按照经典热力学第二定律面积和摘只能随时间增长,而现在霍金的计算表明,微型黑洞,不论是激发与否,都必须允许粒子逃离,即蒸发掉自己的质量和能量。怎么解决这个矛盾呢?
    事后来认识一个重大的理论发现常常是容易的,因为它一下子使尚未理解的现象之间的关系得到了解释。在这个意义上,黑洞的量子蒸发来得正是时候,它证明黑洞的热力学图像是完全正确的,而这个图像的“经典”式描述,严格说来是不自治的,且看道理何在。
    按照热力学定律,所有具有一定温度并沉浸在一种较冷介质(例如空气)中的物体,必定会发出辐射而损失能量。物体的摘减小而周围介质的墙增加。在这个交换中总结,即单个摘的总和,必定增加,这是第二定律所规定的。
    关于黑洞,热力学是怎么说的呢?它有妨,由其表面积给出;有温度,由其表面引力给出。假设把黑洞放在一个浴器里,如果黑洞的温度比浴器的低,它将吸收能量并增加自己的摘;但是如果黑洞的温度高,我们就不得不承认黑洞应当把能量和摘交给浴器,而这与“经典”的黑洞热力学第二定律是矛盾的。
    霍金的发现消除了这个不一致。由于量子力学的特定性质(这将在下面介绍),黑洞即使是在最低能量态也能发射粒子或辐射。由于丧失能量,黑洞的摘,亦即其面积减小,而周围环境的嫡则由于获得能量而增大,并且环境滴的增大量大于黑洞滴的减小量,于是总的摘仍然增大,热力学第二定律为黑洞加环境的整体系统所遵守。
     隧道
    经典观点认为没有任何东西能逃离黑洞,视界是一个“单向膜”,只许进而不许出。从黑洞内部看来,视界就像是一堵无限高的墙,越过它需要有无限大的能量。
    但是量子力学提供了穿过任何一堵墙的可能性,哪怕是没有足够的能量。这种现象被称为隧道效应,是测不准原理的直接结果,而测不准原理则是量子力学的基石,就像等效原理之于广义相对论。
    按照量子力学,对微观世界的描述有着某种“模糊性”。例如,如果我们要测量一个孤立电子的位置,它就必须是有确定位置并且是可见的,要成为可见,它就必须被照明。一个电子是如此之小,用来照明它的光子会给它一个小冲力并改变其运动速度,因此,对电子位置的高精度测量就会导致对其速度测量的一定程度的不准确性。反过来也是如此,如果电子速度的测量精确到1厘米/秒,其位置的测量就不可能精确到1厘米以内。
    更普遍地说,所有测量都会干扰微观系统。测不准原理是维勒’海森堡(WernerHeisenberg)于1927年建立的。当然,当所涉及的质量大得多时,量子不确定性就会减小。质子的质量大约是电子的2000倍,因此如果它的速度测量精度为1厘米/秒,其位置测量精度就能达到约5微米。这个精度虽有提高,仍然是很差的,因为质子的直径还要小上10亿倍。对宏观物体来说,由于其质量比起基本粒子来是如此巨大,因而位置和动量的测不准性都完全消失,宏观世界是“决定论的”(与目前人们的信念相反,这并不意味着其演化能被预测。许多非常复杂但仍完全是经典的即所谓“非线性”的物理现象.虽然是由决定论方程支配,却朝着完全不可预测的状态演化。这就是一个星期以上的天气预报总是那么不可靠的缘故,不论使用的计算机威力有多大)。
    测不准原理也可以运用于其他置于化的物理量,例如能量,在一个很短的时间间隔里能量会有一定的涨落。经典地讲,从黑洞逃离是被禁止的,但是测不准原理允许粒子在一定时间间隔里从黑洞借助一定量的能量。如果黑洞是微型的,即尺度与基本粒子相当,能量的“跃迁”可能足以使粒子运动一段大于视界半径的距离,其结果就是粒子逃出,黑洞损失能量。粒子并没有真的跳过视界“墙”,而是从一个由测不准原理短暂地打通的“隧道”穿过。
     真空极化
    黑洞蒸发还可以由所谓真空极化来作出一种等价的解释。
    在量子力学里,真空并不意味着没有任何场、粒子或能量。量子真空是一种能量为最低的状态,它只是被称作“真空”而已,实际上能量严格为零的状态是不可能存在的。
    时间和能量的测不准原理解释了为什么真空不空。由于质量与能量的等价性,真空中的能量涨落就可以导致基本粒子生成。1928年,泡尔·狄拉克(Paul Dirac)发现,每一种基本粒子都有一种对应的反粒子,二者质量相同,其他性质呈“镜像”对称。电子带负电荷,其反粒子,即正电子,质量相同而电荷相反。光子没有质量,它的反粒子也就是它自己。一个粒子与其反粒子相遇,就会相互湮灭,将质量转化为能量。因此,一个粒子和它的反粒子就表示相当于它静质量2倍的能量,反过来,一定量的能量也可以被看作是一对正二反粒子。于是,由于能量涨落而躁动的量子真空,就成了所谓“狄拉克海”,其中遍布着自发出现而又很快湮灭的正二叵粒子对。
    一对正一负电子在10“’秒内自发地产生和消失。质量更大的粒子对也可以在真空中出现,但是按照测不准原理,它们只能存在短得多的时间。真空中产生的质子、区质子对平均存活的时间比电子一正电子对要短2000倍。
    在不存在任何力的量子真空里,粒子对不断地产生和消灭,所以平均说来就没有任何粒子或反粒子真正产生或是消灭。这些粒子也不能被直接观测,所以被称为虚粒子。现在设想有一个力场,例如电场,作用在真空上。当一对正、负电子在真空中出现时,它们就会被电场沿相反方向分离。如果电场足够地强,它们就会分离得足够地远,以至于不能再相互碰撞和湮灭。这时的粒子就成为实粒子,这时的真空就被称为是极化的。
    粒子由于真空极化而自发地产生,这不是一个理论幻想,而是已由实验证实的现象。考虑量子真空中的一个氢原子,它由一个带负电的电子和一个带正电的质子组成。在它周围,虚粒子对在不断地产生和消失,但是由质子和电子所产生的电场会使近邻区域的真空极化,于是带有相反电荷的粒子就会分离,在一个很短的瞬间形成一股很小的电流。这种电流会使电子在轨道上颤动,因而使氢原子发出的辐射频率出现微小的移动。这就是所谓“兰姆(Lain)移动”,1947年被实验探测到。
    但是,真空是不容易被极化的,需要有很高的能量密度才能使虚粒子对分离和实粒子出现。而能量的形式则并不重要,可以是电能:当电容器极板间的电压超过一定限度时,真空极化,而电容器被击穿;也可以是热能:一块金属被稍稍加热就能发射光子(其反粒子就是自己),但要热到矿2开氏度才发射正一负电子对。
    由于所有形式的能量都等价于质量,就可以合理地预期引力能也会被自发地转变成粒子。这正是霍金的发现的深刻意义。量子真空会被微型黑洞周围的强引力场所极化(图55)。在狄拉克海里,虚粒子对在不断地产生和消失,一个粒子和它的反粒子会分离一段很短的时间,于是就有四种可能性:两个伙伴重新相遇并相互湮灭(过程1);反粒子被黑洞捕获而正粒子在外部世界显形(过程H);正粒子被捕获而反粒子逃出(过程m);双双落入黑洞(过程W)。霍金计算了这些过程发生的几率,发现过程11最为常见。于是,能量的帐就是这样算的:由于有倾向地捕获反粒子,黑洞自发地损失能量,也就是损失质量。在外部观测者看来,黑洞在蒸发,即发出粒子气流。
     黑洞与黑体
    迄今已经考查了所有从黑洞提取能量的机制。黑洞的转动能和电能可以由经典的和量子的两种过程来取出。特别是,前面讲过的带电和转动黑洞由于超辐射过程的退激化,在微型黑洞的情况可以由真空极化来重新解释。黑洞总是喜欢从周围的虚粒子中捕获那些与自己的电荷或角动量反号的粒子,因此,即使一个真空中的微型黑洞在最初形成时有非零电荷和角动量,它总是倾向于自发地使自己中性化和减慢转动,从而尽快地达到史瓦西状态。可是,史瓦西黑洞也失去了其经典的“不可约性”,“死”质量会自动地蒸发。那么,黑洞辐射的精确特征是什么样的呢?
    有趣的是,黑洞的辐射很像另一种有相同“颜色”的东西,就是黑体。黑体是一种理想的辐射源,处在由一定温度表征的完全热平衡状态。它发出所有波长的辐射,辐射谱只依赖于它的温度,而与其他性质无关。一只被加热到一定温度的完全不透明的炉子,上面只开有一个小孔留给观测者来接收其辐射,这只炉子就近似于黑体。事实上黑体是量子力学得以产生的历史根源之一。1899年,马克斯·普朗克正是在研究黑体的性质时提出了能量量子化的假设。
    霍金的计算表明,黑洞的蒸发辐射具有黑体的所有特征。这个结果使得黑洞热力学完全自洽,因为它赋予了黑洞一个真实的、在整个视界上同一的、直接由表面引力来给定的温度。
    对史瓦西黑洞来说,温度与质量成反比。质量与太阳一样的黑洞,其温度是微不足道的:开氏(即绝对零度以上)10”度。这并不奇怪,因为蒸发是一种量子现象,只对微型黑洞才特别有影响,而微型黑洞的温度是很高的。质量像小行星那么大的黑洞,具有“白热”熔炉的温度(开氏6000度),并辐射可见光。“典型”的微型黑洞质量为10”克,个儿像质子那么大,温度高到开氏10’‘度。这时的辐射就不再是集中于可见光段,而是由伽玛射线光子和大质量基本粒子混合组成。
    越小的黑洞温度就越高,所以微型黑洞的发射就会越来越强,蒸发的最后阶段就表现为剧烈的爆发。一个10‘5克的黑洞要经过100亿年才完全蒸发掉,而它在最后几1秒里释放的能量相当于100万颗百万吨级的氢弹。
    黑洞蒸发的最后结果尚不得而知。也许有人认为视界消失后将留下一个裸露的中心奇点,但是这种经典的看法很可能是错的。当黑洞半径缩减到普朗克长度(10”厘米)的量级时,时空几何自身的量子涨落变得重要起来,只有量子引力理论才能揭示微型黑洞的最后命运。如果它由辐射自己的质量而完全蒸发掉,应该说时空就会成为平直。量子引力是认识大爆炸和黑洞命运,即认识宇宙的开端和终结的必由之路。
     引力不稳定性
    一个通常的热力学系统处在一种较冷的介质中时会损失能量。它的温度降低而介质的温度升高,直到实现平衡为止,我们说这个系统有正比热。量子黑洞的行为则正相反,它失去能量时温度升高,反之亦然。如果周围介质的温度较高,黑洞就总是倾向于吸收能量,增大尺度,因而冷却,直至所有可得到的能量都已被吸收为止。反过来,如果介质温度较低,它就辐射,减小尺度,直至蒸发和消散掉自己所有的能量为止。这就是说,黑洞有着负比热,因而它根本上是不稳定的。
    所有自引力系统,即其平衡只依赖于引力的系统,不论是量子系统与否,都是不稳定的。例如,在围绕地球轨道上的人造卫星会由于大气摩擦而损失引力能,因而沿螺旋线缓慢地朝地球下落。在这个过程中其速度和动能是增大的,所以它不能获得~个稳定轨道,最后只能坠落到地球上。
    引力坍缩则是极端的例子。在自身重力作用下,一个恒星或恒星团这样的粒子系统辐射掉引力束缚能,不断收缩,温度变得越来越高。如果没有相反的力存在,奇点将不可避免地形成,达到平衡态是不可能的。微型黑洞的蒸发只不过是一种反方向上的引力坍缩,这可以由图55的时空图来证实。由于物质在离开视界,一个蒸发着的微型黑洞的“瞬时”状态就像一个白洞。因此,量子力学为黑洞提供了作为引力普遍特征的不稳定性。
    更进一步,引力与热力学之间的联系可能是比黑洞广阔得多的自然领域的普遍特征。在黑洞的热力学转变过程中实际上起关键作用的是视界,而视界可以有着与黑洞毫不相干的意义。在狭义相对论的无引力平直时空里,一个具有恒定加速度的观测者不可能“经典地”获得来自一个遥远时空区域的信息,只是因为那个区域发出的辐射不能到达,对他来说那部分时空就隐藏在一个视界之后。如果考虑真空中的量子涨落,就可以得出加速(等效于一个均匀引力场)会使真空极化。如果那个观测者带有一个位于探测器,他将测量到一种黑体辐射形式的“鼻子噪声”,黑体的温度正比于他的加速度。在宇宙学里,膨胀宇宙模型也有视界,因而也有一个相联系的黑体温度(极低,不要与作为大爆炸遗迹的宇宙背景温度开氏27度相混淆)。
    黑洞热力学已经把我们从蒸汽机带出很远了。
     上帝耍人
    基本粒子通过核力和电磁力而相互作用,这些作用服从已由实验验证的一定规则,正是这些规则使得科学家能够建立起一致的清楚的物理理论。规则中有一条是重子数守恒。简单说来,它是指在所有的基本相互作用中,必须保持粒子和反粒子的相称,所以一个光子(重子数为0)可以转变成一个中子(重子数为十l)和一个反中子(重子数为一1)组成的对,因为总的重子数保持为零。但是一个中子决不能转变成一对光子。另一个称为轻子的粒子家族,包括电子、U介子和中微于,也遵守一条相似的规则,这些粒子每个都有一个轻子数,在基本相互作用中总轻子数必须守恒。
    粒子物理的这些基本规则被量子黑洞满不在乎地破坏了。我们已经看到黑洞在形成或吞噬物质时会“失去毛发”:所有关于粒子的信息在它们通过视界时全都丧失了。尤其是,一个由重于(例如大质量恒星中心的质子和中子)形成的黑洞并不记得它的重子数,它跟由反重子形成的黑洞完全一样,我们不可能看出有什么差异。且再耐心等等,在一定时间后黑洞会开始按照霍金机制而辐射,释放能量和摘。黑洞像黑体那样辐射这一事实,意味着它只能发射出相等
返回目录 上一页 下一页 回到顶部 0 0
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!